
Pragmukko

Pragmukko
● Pragmukko is an Akka-based framework for distributed

computing.

● Originally, it was developed for building an IoT solution but it also
fit well for many other cases.

● Pragmukko treats an IoT solution as a cluster. Each device in
such solution is running under a cluster node.

● From Akka, Pragmukko inherits the actor model and clustering
features.

Goals
Pragmukko features:

● Communication
● Clustering
● Integration with 3rd party systems
● Interaction with hardware (due to its IoT origin)
● Fault tolerance
● Service discovering

The Idea
Pragmukko treats the IoT cloud as an
Akka-cluster.
Each device runs an Akka-node, which in
Pragmukko terms is called Pragma.

There are several actors within a Pragma.
Some of them handle system messages,
other run user-defined logic.

Also, Akka provides Pragmukko with
cluster features, so that each node can be
added or removed dynamically, as well as
each node obtains information about
cluster state.

Akka-cluster

Platform for IoT Solutions
Pragmukko was developed to design IoT solutions.

Pragmukko provides the layer for interaction with various hardware. Also, it is
extensible and easily adds support of new types of devices.

One of the goals of Pragmukko is uniform development for different types of devices.

Feature: IoT Simulation
Another approach for IoT development is device
simulation.

It is possible to run simulating Pragmas within one OS
as simple Java processes, and they will behave as
real devices – send telemetry, react on commands,
and more.

So, whenever needed, you can deploy a simulating
IoT cloud for testing, debugging, or experimenting,
even without devices.

IoT Integration Test? – Sounds weird, but why not.

Local cluster

Mocked
drone
(just Java process)

Mocked
drone

Сontrol station

Mock hardware interface

Drones Pragma

Feature: IoT Simulation
The simulating Pragmas don’t interact
with real hardware.

Instead, they use a so-called mock
hardware interface that simulates real
hardware.

Therefore, it becomes possible to run
even a number of Pragmas within one
process.

There are several predefined mock
hardware interfaces. Also, it’s easy to
create a new one.

Local Unit

Hardware mock

Simulation
Pragma

Local Unit

Hardware
interaction layer

Hardware:
Pixhawk

Pragma

Other
nodes

Other
nodes

Pragnaky
Another option of Pragmukko usage is development of distributed applications.

Pragnaky is a cluster health monitoring tool, a component of Mantl, that was
created using Pragmukko.

Pragnaky includes extended Pragmas on each physical cluster node for obtaining
telemetry and measuring network latencies between hosts, and special Pragmas for
collecting telemetry from all pragmas and storing it to ElasticSearch.

Pragnaky Schema

Cluster Node 1

Pragma

Cluster Node 2

Pragma

Cluster Node N

Pragma...

Manage-Pragma
(PragmaCap)

Manage-Pragma
Reserve instance

ElasticSearch
cluster

REST
endpoint

Network latency probes

SPARK
MapReduce

...

WEB
Node.Js

Java
...

Integration with the 3rd Party Solutions

Manage-Pragma

REST

HDFS

IoT cluster

New features can be added to Pragmas by
extensions. A Pragma extension is an actor which
can be subscribed on different messages from an
Akka cluster. It can be telemetry from dedicated
Pragmas, or just all messages received by a
current Pragma.

Extentions can be used for integration with the
third party systems. Right now out of the box we
have HDFS, Rest, and ElasticSearch extension.
The REST extension exposes the http and web-
socket interfaces, which allows not only to receive
data from a cluster, but also to send commands
into a cluster as well. In our tests, we were using
this feature for drone-controlling from a web page.

Real-World Example
Several drones are randomly flying in a closed area, and a ground control station
doesn’t allow them to leave this area.

Here we have two pragma types:

● A Drone pragma
● A Manager pragma that works as a ground control station

object EmbeddedMain extends App with DroneCommands {

 var (vx, vy) = (Random.nextFloat(), Random.nextFloat())

 EmbeddedPragma {
 ctx => {
 case Start =>
 ctx.subscribeHardwareEvents()
 ctx.self ! moveTo(0,0,-10)
 ctx.self ! direction(vx, vy, 0)

 case TelemetryBatch(batch) => // TelemetryBatch - message contains drone
 val position = batch.collect { case DronePositionLocal(p) => p }.lastOption
 ctx.listeners foreach (_ ! position)

 case "turn x" =>
 vx = -vx
 ctx.self ! direction(vx, vy, 0)

 case "turn y" =>
 vy = -vy
 ctx.self ! direction(vx, vy, 0)
 }
 }
}

Drone Pragma Listing

Drone Pragma Listing (cont.)
Drone pragma handles only four messages:

1. Start – an internally generated message, sent right after a node is joined to
the cluster and is ready to work.

2. TelemetryBatch – an internally generated message; this kind of message
is sent by HardwareGate and contains hardware telemetry.

3. “turn x” – a custom message sent from ground control station; it changes
the X speed to opposite.

4. “turn y” – a custom message sent from ground control station; it changes
the Y speed to opposite.

Drone Pragma Listing (cont.)
The handler of the “Start” message contains the following code:

 ctx.subscribeHardwareEvents() – turns on receiving events from hardware layer

 ctx.self ! moveTo(0,0,-10) – sets initial position of drone
 ctx.self ! direction(vx, vy, 0) – sets initial vector of movement

The functions “moveTo” and “direction” produce special hardware-dedicated messages.

Ground Control Listing
object GCMain extends App {

 GRoundControlNode
 .build()
 .addExtention[DroneControlExt]
 .start()
}

class DroneControlExt extends GCExtentions with DroneCommands {

 override def process(manager: ActorRef): Receive = {

 case DronePositionLocal(position) =>
 if (position.x > 100 || position.x < -100) sender() ! "turn x"
 if (position.y > 100 || position.y < -100) sender() ! "turn y"
 }
}

Ground Control Listing (cont.)
● The Ground control pragma snippet is even simpler than drone

snippet as it handles only one message – “DronePositionLocal”.

● This message is generated by a drone-node and contains drone
physical position.

● In the message handler, the drone position is analyzed and
appropriate correcting message is sent back to the drone.

● This is all you need, no other configurations required.

Behind the Scene
(How it works)

 Pragmukko provides two basic pragma-types:

● Pragma – for implementing device-side logic;
● PragmaSup (need to be renamed to Manager Node)– for

implementing common cluster logic.

In example above, the drone-node is implemented using
Pragma.

Each of basic node types has a dedicated builder.

PragmaSup
The purpose of PragmaSup node is being the single point of orchestration for
other nodes. Also, this node type can be used for obtaining information from other
nodes and storing it. For example, storing telemetry from all devices in HDFS for
further analysis.

You can run any number of the PragmaSup nodes in a cluster, or even to not run
them at all. But it is recommended to have at least 1 node of such type per cluster,
as by default, it also runs node-discovering features.

PragmaSup Structure

UDP-Responder

Manager

Extention 1

Extention 2

Extention .. n

...

The GroundControl node consists of several Actors within one Akka-
node:

UDPResponder is the component of node-discovering subsystem. It’s
listening to broadcast messages from other nodes and trying to join the
cluster.

Manager handles internal Pragmukko messages.

Extentions – a set of user-defined Actors that implement user logic.
It’s possible to provide any number of Extensions. For example, one
extension can write telemetry from all nodes to log file, and the other can
implement collision-avoidance algorithm.

Pragma structure

Broadcast Sender

Embedded Node

Hardware layer

Embedded Node runs on devices and implements device-level
logic. This node was developed to be as simple as possible, as
it works on small devices.

Broadcast Sender – a component of a node-discovering
subsystem.

Embedded Node handles system and user-defined messages.

Hardware layer – a facade for interacting with hardware.

Feature: Service Discovering

We added a service-discovering feature that uses UDP
broadcasting for searching new cluster members.

So if nodes share the same cluster-ID, they will
automatically join the same cluster.

No seed-node configuration anymore.

Cluster

New member

Broadcast discovering

Roadmap
● Improving service discovering

○ Zookeeper node discoverer – 1 week

○ Consul node discoverer – 1 week

● Discovering over NAT – 2 weeks

● Integrating with third party solutions

○ Adapter for MongoDB – 1 week

● Implementing analytics framework

○ Adapter for Spark Streaming – 1 week

○ Integration with Apache Flink – 2 weeks

● Improving hardware interaction layer – 2 weeks

● Creating web dashboard – 2 weeks

● Performing deployment and diagnostic tools – 2 weeks

